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Abstract Sentiment analysis has been used to study aspects of software engi-
neering, such as issue resolution, toxicity, and self-admitted technical debt. To
address the peculiarities of software engineering texts, sentiment analysis tools
often consider the specific technical lingo practitioners use. To further improve
the application of sentiment analysis, there have been two recommendations:
Using pre-trained transformer models to classify sentiment and replacing non-
natural language elements with meta-tokens. In this work, we benchmark five
different sentiment analysis tools (two pre-trained transformer models and
three machine learning tools) on 2 gold-standard sentiment analysis datasets.
We find that pre-trained transformers outperform the best machine learning
tool on only one of the two datasets, and that even on that dataset the per-
formance difference is a few percentage points. Therefore, we recommend that
software engineering researchers should not just consider predictive perfor-
mance when selecting a sentiment analysis tool because the best-performing
sentiment analysis tools perform very similarly to each other (within 4 per-
centage points) . Meanwhile, we find that meta-tokenization does not improve
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the predictive performance of sentiment analysis tools. Both of our findings
can be used by software engineering researchers who seek to apply sentiment
analysis tools to software engineering data.

Keywords Sentiment Analysis, Sentiment Analysis for Software Engineering,
meta-tokenization, Sentiment Analysis Tools

1 Introduction

The increasing complexity of modern software engineering projects has re-
sulted in software engineering becoming an inherently collaborative process.
To help developers understand and manage software projects researchers have
studied emotions and sentiment in software engineering because expressions
of negative sentiment in software engineering projects could be used to iden-
tify potential problems (Lin et al., 2022). For instance, while studying senti-
ment Calefato et al. (2018b) found that successful questions on StackOverflow
are short, and more importantly, do not express any sentiment, negative or
positive. In a similar vein, Lanovaz and Adams (2019) found that negative
posts on the R mailing lists were less likely to be responded to. In addition
to these topics, studies have also investigated sentiment expressed in software
engineering artifacts such as code reviews (Ahmed et al., 2017; Bosu et al.,
2015; Paul et al., 2019), questions asked by developers (Uddin and Khomh,
2021) and issues (Maalej and Nabil, 2015; Ortu et al., 2019). However, there
are many areas of software engineering in which sentiment analysis can be
expected to be beneficial but has not yet been applied (Lin et al., 2022). In
this work, we define sentiment analysis as a classification task in which a piece
of text is assigned to a polarity class (usually positive, negative or neutral).

On the meta-level researchers have also studied how one can effectively
study sentiment in software engineering (Biswas et al., 2020; Chen et al., 2019;
Jongeling et al., 2017; Novielli et al., 2020, 2021). These studies have resulted
in several practical recommendations on how one should use sentiment anal-
ysis tools on software engineering data. In this paper, we are interested in
two recent recommendations, and we seek to verify them. Through studying
these recommendations we seek to further understand how software engineer-
ing researchers can more effectively study expressions of sentiment in software
engineering.

The first recommendation we study in this paper originates from two stud-
ies of Biswas et al. (2020) and Chen et al. (2019) who recommend the usage of
deep-learning-based sentiment analysis tools to classify sentiment in software
engineering texts. However, contradicting the recommendations of Biswas et al.
and Chen et al., Lin et al. (2022) found that machine-learning approaches out-
perform deep-learning approaches when the size of the datasets is small. The
exact reason for the misalignment between the recommendations of Biswas
et al. and Chen et al. and the work of Lin et al. is not clear. One possible
explanation might be related to different datasets being used in each of the
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benchmarks. Alternatively, the differences might be attributed to the appropri-
ateness of the training of the machine-learning tools. For instance, Shwartz-Ziv
and Armon (2022) found that deep-learning tools do not always outperform
machine-learning tools. Fu and Menzies (2017), Pamungkas et al. (2020) and
Yedida and Menzies (2022) studied similar questions in software engineering.
They find that both machine-learning classifiers (such as SVM) and more sim-
ple deep-learning tools can outperform more complex deep-learners on various
types of data. In this paper, we take the recommendations to use deep-learners
to classify sentiment in software engineering texts (Biswas et al., 2020; Chen
et al., 2019), and the work that finds that deep-learners do not always out-
perform non-deep-learning machine-learning tools (Fu and Menzies, 2017; Lin
et al., 2018; Shwartz-Ziv and Armon, 2022; Yedida and Menzies, 2022). In
a robust experimental set-up we seek to verify the existing recommendation,
and we aim to understand how existing practices and recommendations can be
updated to accurately apply sentiment analysis to software engineering data.
Therefore, we pose:

RQ1: Do existing deep-learning sentiment analysis models outperform machine-
learning-based sentiment analysis tools?

The second recommendation we investigate in this work is the recommen-
dation of Efstathiou and Spinellis (2018) to replace non-natural language in
technical texts with tokens that capture the meaning of non-natural language.
In this work we refer to this practice as meta-tokenization, however, this prac-
tice is also known as semantic categorization (Stanojevic and Vraneš, 2009).
Text extracted from social coding platforms, such as GitHub, might contain
different types of non-natural language elements like code-snippets, stacktraces
and references to pull-requests. Several detection techniques for non-natural
language in technical texts already exist: Such as NLoN (Mäntylä et al., 2018),
or an approach authored by Bacchelli et al. (2010). Finally, Efstathiou and
Spinellis (2018) proposes replacing these non-natural language elements that
occur in code reviews with meta-tokens, where each meta-token replaces a
specific type of non-natural language element. As existing sentiment analy-
sis tools obtain performance scores of 90%, we seek to understand whether
a consistent meta-tokenization approach further improves the performance of
sentiment analysis tools. Therefore we pose:

RQ2: How does the replacement of non-natural language elements in senti-
ment analysis data with meta-tokens affect the performance of Sentiment
Analysis tools?

To study the two research-questions posed in this work we follow exist-
ing recommendations (Novielli et al., 2020) and we take two gold-standard
datasets tailored for software engineering . We benchmark five state-of-the-art
machine-learning and deep-learning sentiment analysis tools made for soft-
ware engineering using these two datasets. To answer RQ1, we take each tool
and train it on a train split of the dataset and then evaluate the predictive
performance of the tool on a test split of the same dataset. To ensure the
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validity of the results, we ensure the benchmarks are as robust as possible and
we validate the recommendation by comparing the performance scores of the
machine-learning and deep-learning-based tools.

To address RQ2 we train sentiment-analysis tools on both the original
version of the dataset, and a version of the dataset that has been processed
such that non-natural language elements identified through a mix of manual
and automated detection techniques have been replaced with meta-tokens. We
then evaluate the predictive performance of each tool after training it on both
versions of each dataset. And we test whether the predictive performance of
the tool trained on the meta-tokenized version of the dataset is higher than
on the tool trained on the original version of the dataset.

Based on the experiments we conduct for RQ1 we find that there exists
a small but observable performance differences between machine learners and
deep learners. The best-performing machine learner, Senti4SD, outperforms
one of the two evaluated deep-learning tools on one dataset. While on another
dataset both deep learners outperform Senti4SD. However, while these per-
formance differences exist they are minor, with performance scores differing
by at most four percentage points. Meanwhile, for RQ2 we find that meta-
tokenization does not significantly improve the performance of any of the five
sentiment analysis tools evaluated in this study.

Our work has several findings for researchers that aim to apply sentiment
analysis tools to better understand software engineering :
– Predictive performance of deep-learning and machine-learning sentiment

tools on gold-standard datasets is comparable: performance differences be-
tween tools do not exceed four percentage points.

– The presence of non-natural language elements in the current gold-standard
datasets and the replacement of the non-natural language elements with
meta-tokens does not significantly affect the performance of sentiment anal-
ysis tools.

This paper is structured as follows: Section 2 describes the used methodol-
ogy, Section 3 lists the results, Section 4 argues that our chosen methodology
is sound, Section 5 discusses the implications of our work, Section 6 discusses
threats to validity, Section 7 discusses related work, and Section 8 concludes
the paper.

2 Methodology

For this study we are interested in the performance of sentiment-analysis tools.
To address RQ1 we compare the performance of machine-learning tools with
deep-learning-based tools. Additionally, we address RQ2 by studying the per-
formance of sentiment analysis tools after retraining them on a meta-tokenized
version of a dataset.
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2.1 Tools & Datasets

Datasets: In line with recent recommendations of Novielli et al. (2020) we
select gold-standard sentiment analysis datasets. For this study, we define gold-
standard as the largest and most rigorous datasets in the field of sentiment
analysis for software engineering. In practice, this means the largest available
balanced datasets have been labeled using theoretical models of affect by raters
that achieve high inter-rater agreement (Novielli et al., 2020). For this study,
we select the following gold-standard datasets:

– Github gold-standard: As GitHub is one of the most popular open-source
platform, used by developers to work on collaborative software projects we
select the gold-standard dataset authored by Novielli et al. (2020). This is a
balanced dataset of 7,122 items, where 28%, 43% and 29% of posts convey
negative, neutral and positive sentiment respectively. Each item in the
dataset has been annotated by three authors using predefined annotation
guidelines. The items in the dataset have been sampled from comments
on commits and pull-requests taken from 90 GitHub repositories that were
part of the 2014 MSR Challenge dataset. (Novielli et al., 2020)

– StackOverflow gold-standard: StackOverflow is a well-studied Q&A plat-
form used by developers. The dataset of Calefato et al. (2018a) is a balanced
dataset of 4,423 items (≃ 27% negative, ≃ 38% neutral, ≃ 35% positive),
labeled by several labelers that used predefined annotation guidelines. Ad-
ditionally, the labelers of Calefato et al. achieved high inter-rater agree-
ment. The items in the dataset have been sampled based on the presence
of affective lexicons from a StackOverflow dump that covers the timeframe
from July 2008 to September 2015. The sampled items are a combination
of questions, answers, and comments. (Calefato et al., 2018a)

Tools: To find sentiment analysis tools for this study we use the list of
tool identified by Lin et al. (2022). We select sentiment analysis tools that are
publicly available, have been peer-reviewed, can be retrained, and have been
designed for an application in Software Engineering. This has resulted in the
list of the following four tools: SEntiMoji (Chen et al., 2019), SentiSW (Ding
et al., 2018), SentiCR (Ahmed et al., 2017) and Senti4SD1 (Calefato et al.,
2018a). As the papers included in the literature study of Lin et al. have been
gathered in 2019 it does not include the most recently released tools. There-
fore, we also include a BERT-based transformer tuned for sentiment analysis
published by Zhang et al. (2020).

SEntiMoji (Chen et al., 2019) is a deep-learning sentiment analysis tool
based on a sentiment analysis tool that was originally designed for Twitter.
It has been trained on Twitter, and is fine-tuned by the authors on Software
Engineering data.

The BERT-based transformers published by Zhang et al. (Zhang et al.,
2020) are deep-learning models that attempt to leverage existing large-scale

1 Note that we used PySenti4SD, as this is the more recent version of Senti4SD.
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language models to classify sentiment in software engineering text accurately.
The pre-trained models are finetuned by the authors on Software Engineering
datasets, and a comprehensive and re-usable replication package is available.
In the paper, the authors evaluate four different pre-trained transformers. For
this study we select one of the transformers that achieves competitive scores:
Bert.

SentiSW (Ding et al., 2018) is built to classify the sentiment of issues
comments on Github. The authors of SentiSW use a preprocessing pipeline to
process the input and create TF-IDF vectors, finding that Gradient Boosting
Tree (Pennacchiotti and Popescu, 2011) is the most accurate classifier.

SentiCR (Ahmed et al., 2017) is a sentiment analysis tool built to ana-
lyze code reviews on Github. It uses a preprocessing pipeline that performs
operations such as the processing of negations and the generation of feature
vectors based on TF-IDF. Finally, a Gradient Boosting Tree (Pennacchiotti
and Popescu, 2011) is used to predict the sentiment. SentiCR as originally
trained by the authors, is suited for binary classification: Is negative senti-
ment present yes or no? We retrain SentiCR using datasets containing both
positive, negative, and neutral sentiments, and as such, we use it for ternary
classification (positive, negative, or neutral). The only training parameter we
modify is the oversampling of the minority item. The original authors use a
value of 0.5, we set it to auto such that all classes except the majority class
are resampled.

Senti4SD (Calefato et al., 2018a) uses a mix of lexicon-based, keyword-
based, and semantic features to process input. Together with these features,
the authors of Senti4SD use a word2vec (Mikolov et al., 2013) model and
finally train a Support Vector Machine (Cortes and Vapnik, 1995) to classify
sentiment.

2.2 Evaluating tool performance

For each of the tools studied in this work, we retrain the tool using the recom-
mendations and procedures described in the paper that introduces the tool.
We train each tool using the selected datasets using a stratified 70%/30%
train-test split, as used by previous work (Novielli et al., 2020). To assess the
performance of the sentiment-analysis tools for RQ1, we study performance
metrics like precision, recall, and f1. For RQ2 we study both performance met-
rics and the inter-tool agreement on the test set. Both performance metrics and
inter-tool agreement have been used previously to evaluate sentiment analysis
tools (Novielli et al., 2020). To reduce the chances of a particular train/test
split introducing a bias we take ten different train/test splits of each dataset
and evaluate the performance of each tool on each split.

RQ1: To answer this research questions we compare the observed per-
formance scores of the best performing machine learning tool with the two
transformer-based deep-learning tools. Because we run 10 train/test runs, we
compare the obtained distributions of performance scores. This comparison
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Table 1: Number of non-natural language elements identified in the 100 item
sample of each dataset

Item GitHub StackOverflow

Code 17 4
Username 10 3
Url 4 4
Version Number 1 2
Filename / path 1 2
Warning / Error code 2 1
Command 1 -
Hash 1 -
Mail fragment 1 -

Total 38 16

is made per performance metric (f1, precision, recall) for the macro averaged
scores over the three sentiment polarity classes.

Our null hypothesis for RQ1 is the following:

– Hypothesis 1: There is no difference in the predictive performance between
deep-learning and machine-learning models for sentiment analysis in soft-
ware engineering.

To test this hypothesis we first apply a Kruskall-Wallis test to see if there is any
difference between the performance scores. If the p-score is lower than 0.05, we
apply a set of Dunn’s tests as post-hoc tests: One per dataset and performance
metric (Dinno, 2015). To correct for a false discovery rate we adjust p-values
using the Benjami-Hochberg procedure (1995). We reject the hypothesis if the
adjusted p-value is lower than 0.05, and confirm the alternative hypothesis
that at least one model has different predictive performance.

RQ2: To study whether meta-tokenization improves the ability of sentiment
analysis tools to predict sentiment we first identify meta-tokens in the two
datasets, and we study whether the usage of meta-tokens improves accuracy
and agreement. The agreement of sentiment analysis tools has been studied
previously in benchmarks (Novielli et al., 2020).

To identify meta-tokens we sampled 100 items from each dataset. This 200-
item sample was manually labeled by two authors of the paper. The labeling
task was to identify, extract, and name all non-natural language elements. For
the labeling task, we define non-natural language elements as those elements
that are not regular text, specifically, we consider class names that are used as
named entities as natural language elements. After identifying and extracting
the non-natural language elements each extracted element was labeled with
a descriptive name by the labeler. The agreement between the two labelers
was substantial, with a Cohen’s kappa of 0.65. Any remaining conflicts, and
the naming itself, were discussed in a shared session and any conflicts were
resolved. The final extraction and naming of non-natural language elements
are listed in Table 1.
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Table 2: List of tokens, the expressions used to detect them, and the number
of meta-tokens they are replaced with for both datasets.

Type Token # Replacements

Github StackOverflow

Email M_EMAIL 140 9
Username M_MENTION 715 235
Inline Code M_ICODE 89 126
Version Number M_VERSION_NUMBER 342 172
Issue reference M_ISSUE_MENTION 51 -
URL M_URL 368 182

To replace the non-natural language elements in the dataset we use the
following procedure: Based on the non-natural language elements identified
(Table 1) we manually created a set of meta-tokens. This list is extended with
non-natural language elements that occur in the markdown documentation
of each platform. Each meta-token is a tuple of a regular expression and a
token name. The tokens we use per dataset are listed Table 2, while the regex
rules used to replace these tokens can be found in the replication package.2
Each document in the dataset is then processed using these tuples, and each
regular expression match is replaced with the token name. For example, if a
code fragment is identified, we replace the code fragment with the meta-token
M ICODE. We maintain a separate list of meta-tokens per platform because
the markup language used differs slightly per platform. The total number of
replacements per meta-token is listed in Table 2. 22% of the items in the
Github dataset contain at least one meta-token, and 13% of the items in the
StackOverflow dataset contain at least one meta-token.

To measure the impact of meta-tokenization on predictive performance we
take the median performance score of each tool for each dataset, for each
performance metric, and for each sentiment polarity class. We compare the
median score of that particular tool trained on the dataset, with the median
score of that tool trained on the meta-tokenized version of the dataset. By
comparing the median intra-tool scores we hope to understand whether meta-
tokenization has an impact.

Moreover, we also use a Mann-Whitney Wilcoxon test (McKnight and Na-
jab, 2010) to compare intra-tool performance scores for the tools trained on
the meta-tokenized and untokenized versions of the dataset. We use a Mann-
Whitney Wilcoxon test as opposed to Kruskall-Wallis with as post-hoc a
Dunn’s test since we are comparing the two distributions of performance scores
for each tool. We adjust p-values using the Benjami-Hochberg procedure (1995)
to adjust for a false discovery rate.

2 The replication package can be found on figshare (https://figshare.com/s/
1dbdf605abb20441b3d8), and for each platform, a notebook with the replacement rules ex-
ists.

https://figshare.com/s/1dbdf605abb20441b3d8
https://figshare.com/s/1dbdf605abb20441b3d8
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To further understand the effects of meta-tokenization we compute the
weighted Cohen’s kappa (Cohen, 1968) per tool pair per run. We then use a
similar statistical methodology for the predictive performance to study whether
there is a statistical difference between inter-tool agreement for tools trained
on the original version of the dataset and the meta-tokenized version of the
dataset.

For the statistical tests, we use the following null hypotheses:

– Hypothesis 2: There is no difference in the predictive performance between
a sentiment analysis tool trained on a meta-tokenized version of a dataset
vs. the same tool trained on an unmodified version of the dataset.

– Hypothesis 3: There is no difference in the intra-tool agreement between
sentiment analysis tools trained on the meta-tokenized version of a dataset
vs an unmodified version of the dataset.

For Hypothesis 2 we test the hypothesis for each dataset, tool, and performance
metric and adjust the obtained p-values accordingly. For Hypothesis 3 we test
the hypothesis per tool pair and per dataset and adjust the p-values over
these comparisons. We reject each hypothesis if the adjusted p-value is lower
than 0.05. If Hypothesis 2 is rejected, we confirm the alternative hypothesis
that there are differences in the predictive performance of the tool depending
on the version of the dataset it is trained on. In the case that Hypothesis 3 is
rejected, we confirm the alternative hypothesis that there are differences in the
intra-tool agreement depending on the version of the dataset they are trained
on.

3 Results

This section reports the performance of the machine-learning and deep-learning
sentiment analysis tools (RQ1). The section also reports the performance of
sentiment analysis tools after retraining them on meta-tokenized versions of
the datasets (RQ2). Data availability statement: The dataset of perfor-
mance scores of the analyzed sentiment-analysis tools is publicly available in
a Figshare repository.3

3.1 Machine learning and Deep learning

Table 3 contains the results of the ten runs for each tool on each dataset. Bold-
face highlights the best-performing tool per metric. As can be observed, the
two deep-learners outperform the machine-learning tool on the StackOverflow
dataset. However, for the GitHub dataset there are instances where Senti4SD
outperforms the deep-learners. When performance differences exist between
the best performing machine-learner and the deep-learning tools these differ-
ences are mostly a few percentage points.

3 https://figshare.com/s/1dbdf605abb20441b3d8

https://figshare.com/s/1dbdf605abb20441b3d8
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Table 3: Median performance score for each metric per tool for each of the ten
runs.

Tools

Positive Negative Neutral Macro

P R F1 P R F1 P R F1 P R F1

GH

Senti4SD 0.937 0.906 0.919 0.911 0.887 0.902 0.891 0.924 0.906 0.911 0.906 0.908
SentiSW 0.807 0.802 0.809 0.772 0.649 0.701 0.741 0.836 0.787 0.777 0.760 0.766
SentiCR 0.893 0.842 0.869 0.867 0.695 0.774 0.780 0.915 0.842 0.848 0.820 0.829

Sentimoji 0.941 0.919 0.929 0.907 0.845 0.876 0.872 0.927 0.899 0.907 0.898 0.902
Bert 0.911 0.950 0.929 0.890 0.891 0.887 0.927 0.896 0.906 0.907 0.912 0.908

SO

Senti4SD 0.899 0.920 0.909 0.787 0.842 0.817 0.833 0.779 0.807 0.843 0.846 0.844
SentiSW 0.866 0.886 0.882 0.820 0.712 0.763 0.780 0.836 0.806 0.822 0.812 0.815
SentiCR 0.880 0.906 0.895 0.790 0.731 0.758 0.796 0.814 0.805 0.822 0.819 0.820

Sentimoji 0.923 0.931 0.926 0.842 0.835 0.836 0.839 0.839 0.834 0.868 0.867 0.867
Bert 0.924 0.939 0.930 0.849 0.863 0.853 0.863 0.847 0.851 0.878 0.879 0.878

Table 4: Table containing the results of the Dunn’s tests for the comparison
of deep-learners and machine-learners on the macro performance metrics.

Metric Tools Corrected P-value
GitHub StackOverflow

f1 Senti4SD/Sentimoji .031∗ .010∗

f1 Senti4SD/Bert .629 < .001∗∗∗

f1 Sentimoji/Bert .108 .153
precision Senti4SD/Sentimoji .127 .010∗

precision Senti4SD/Bert .127 < .001∗∗∗

precision Sentimoji/Bert .959 .123
recall Senti4SD/Sentimoji .042∗ .010∗

recall Senti4SD/Bert .909 < .001∗∗∗

recall Sentimoji/Bert .031∗ .127
***: p < 0.001, **: p < 0.01, *: p < 0.05

To study the distribution of the performance scores, Figure 1 presents a
violin plot of the three best-performing sentiment analysis tools (Senti4SD the
best-performing machine learner, and Bert and Sentimoji two deep learners)
on both datasets. The violin plot visualizes the macro-averaged performance
scores per metric of the 10 runs per tool. As can be observed, the performance
differences between most tools for most metrics on GitHub are small or hard
to distinguish. Meanwhile, for the StackOverflow dataset, the performance
differences between the three tools are easier to see.

The p-values for the Kruskall-Wallis tests are all smaller than .001. There-
fore, we compare the performance scores obtained using Dunn’s test. The P-
values of these comparisons are shown in Table 4. For the GitHub dataset the
only significant difference is found between Senti4SD and Sentimoji for recall
and f1, and between Sentimoji and Bert for recall. Meanwhile, for the Stack-
Overflow dataset we find that Bert and Sentimoji are different from Senti4SD
for all performance metrics. Additionally, no statistically significant differences
are found between Bert and Sentimoji.
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Fig. 1: Performance of Senti4SD, Sentimoji and BERT on the GitHub and
StackOverflow datasets. The range on the y-axis for plots range from 0 to 1.

RQ1

Transformer-based models outperform machine-learning tools on the
StackOverflow dataset, while no significant performance differences
are observed for the GitHub dataset. However, the observed perfor-
mance differences between the best-performing machine-learner and
transformer-based model are a few percentage points at most.
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3.2 Meta-tokenization

Table 5 lists the median performance scores per sentiment polarity class and
metric after benchmarking the five tools on the untokenized and meta-tokenized
(mt) versions of the datasets. Each pair of rows corresponds to a tool and a
dataset, and the boldface indicates on which version of the dataset the tool
managed to score higher. In case of a tie, both values are typeset in bold.

As can be observed in Table 5 meta-tokenization does not appear to greatly
affect the predictive performance of the three sentiment analysis tools. For
some classes and for some tools the performance of the tools trained on the
meta-tokenized version of the dataset appears to be slightly higher. How-
ever, the difference in performance scores for the tools trained on the un-
tokenized and meta-tokenized datasets is quite small. SentiCR, for instance,
scores slightly higher on most metrics and classes of the meta-tokenized version
of the GitHub dataset than the untokenized version, however, these observed
differences are minor.

To test whether any significant differences exist between the tools on meta-
tokenized and untokenized versions of datasets, we use the Mann-Whitney U
test to compare the distributions. However, we find that the adjusted p-values
after running the pairwise Mann-Whitney U tests are all 1.0, for all tools
on both datasets. Therefore, we observe no evidence that meta-tokenization
influences predictive performance.

To determine whether meta-tokenization affects the agreement of the senti-
ment analysis tools we compute the weighted Cohen’s Kappa for each tool pair
per run and dataset. The corrected p-values for the pairwise Mann-Whitney
U tests comparing the observed agreement before and after meta-tokenization
are all 0.970 indicating that meta-tokenization does not affect the agreement
of the tools.

RQ2

We conclude, based on the performed benchmarks, that there is no ev-
idence that meta-tokenization significantly improves either the predic-
tive performance of sentiment analysis tools or the ability of sentiment
analysis tools to agree.

4 Devil’s Advocate

In this work we present negative results: Meta-tokenization does not im-
prove predictive performance or agreement of sentiment analysis tools, and
pre-trained transformers do not always outperform machine learning tools.
Therefore, in this section, we present and answer several questions that could
be raised by a Devil’s advocate concerning the soundness of our methodology.
Each subsection presents a question, a short motivation for the question, and
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a response. This section is inspired by the line of reasoning used by Sidhu et al.
(2019).

4.1 What process was used to label the items in the dataset? Could bias in
the labeling influence the results? Could bias in train-test splits influence the
results?

From the work of Novielli et al. (2020) we know that labeling datasets used to
train sentiment analysis tools is important, as datasets should be labeled using
clear and consistent guidelines. Not only does the labeling of datasets matter,
but how a dataset is split into a train and test split might also influence results.

The two datasets selected for this study, the StackOverflow and the GitHub
datasets, have been labeled using labeling guidelines based on existing theo-
ries of affect. Additionally, for both datasets the labeling process was executed
over several rounds, and for each round disagreements were discussed (Calefato
et al., 2018a; Novielli et al., 2020). This ensures that for both datasets inter-
rater reliability is high, resulting in robust and reliable datasets with a well-
operationalized definition of sentiment. By training the tools on these gold-
standard datasets we minimize the chances that ad-hoc labeling, or inconsis-
tent labeling influences the performance of the tools.

Additionally, each experiment in this study is repeated ten times, each
time using a different random seed for the stratified train-test split. Using this
repetition we avoid that the results are influenced by a single train-test split
or a single initialization of random parameters for one of the tools.To ensure
that the tools are compared on equal grounds, the same train/test split is used
across the tools for each run. By reporting both the median performance score,
and by doing statistical testing on the obtained performance scores we aim to
obtain results that are sound and reliable. These 10 runs ensure that for both
research questions (RQ1 and RQ2) the obtained differences across tools, or
as a result of meta-tokenization, are not due to random effects, or opportune
train-test splits.

Response: Given the reliable labelling process on both datasets and our
multiple runs with random train-test splits, our confidence on the RQ1 and
RQ2 results is strengthened.

4.2 Don’t sentiment analysis tools already apply preprocessing techniques to
handle non-natural language?

If the existing sentiment analysis tools evaluated in this work already apply
techniques to filter out or otherwise preprocess non-natural language the find-
ings for RQ2 might be impacted.

To determine whether the tools benchmarked in this study apply tech-
niques that might affect the effectiveness of meta-tokenization we analyze the
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papers in which the tools were originally described (Ahmed et al., 2017; Biswas
et al., 2020; Calefato et al., 2018a; Chen et al., 2019; Ding et al., 2018). From
the papers we extract and read the sections in which the preprocessing process
is described, and we report the steps taken by the tools to process the input
texts. Where needed we also analyzed the available source-code of the tools,
to better understand how the tools pre-process input.

Senti4SD: Uses extensive feature engineering which can be divided into
three categories: generic sentiment lexicon features, keyword-based features
and features based on word embeddings (Calefato et al., 2018a). While comput-
ing these features Senti4SD applies very limited preprocessing. It only replaces
all usernames with the meta-token @USERNAME. However, Senti4SD does not
perform any stemming or lemmatization, nor are stopwords removed. In the
paper for Senti4SD no details are mentioned about the removal of URLs, stop-
words or HTML. However, the authors do mention that the dataset on which
Senti4SD was originally trained is a dataset in which URLs, code snippets and
HTML tags were removed. This dataset is the StackOverflow gold-standard
dataset.

SentiCR: Uses many different preprocessing steps to process an input item
of text, in total 7 steps are used (Ahmed et al., 2017). In order of execution
these are:
1. Expansion of contraction: Expands contractions such as I’m → I am using

a dictionary of 124 commonly occurring contractions.
2. URL Removal: Removes all URLs from the text.
3. Handling of emoticons: Replaces four emoticons with a predefined token

indicating whether the emoticon is positive or negative.
4. Negation pre-processing: Uses NLTK (Bird et al., 2009) to express a chunk

grammar that can recognize and annotate negations such as “I do not like
your changes”.

5. Word stemming: The stemming of input words with the stemmer of NLTK.
6. Stop-word removal: Removal of stop-words using a customized list of stop-

words.
7. Code-snippet removal: The removal of code snippets through a list of pre-

defined keywords, and the removal of all words that are present in less than
three input texts of the train set.
SentiSW: Similar to SentiCR, SentiSW uses a preprocessing pipeline that

contains the following steps in order of execution:

1. Non-English character deletion: The deletion of all non-ascii characters
from the input.

2. Contraction expansion: Similar to SentiCR, however, no mention is made
of the list of contraction used.

3. Code snippet removal: The usage of a GitHub markdown parser to remove
markdown code snippets.

4. URL and quotation removal: Removal of URLs and text enclosed in quotes.
5. Stop-word removal: Removal of stop-words using a predefined list provided

by StanfordNLP (Manning et al., 2014).
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6. Emoticons and punctuation mark processing: The replacement of emoticons
with tokens indicating whether the emoticon is positive or negative.

7. Negation marking: The usage of grammar rules to annotate negations, a
predefined list of negation words is used.

8. Word tokenization and stemming: The usage of NLTK to tokenize and stem
words (Bird et al., 2009).

SEntiMoji: In the paper of SEntiMoji no explicit mention of preprocessing
of input data is made (Chen et al., 2019). The one detail that is mentioned
is that the dataset used for the finetuning of SEntiMoji has been processed
using meta-tokens for code, urls and issue references. However, no mention is
made of applying this same preprocessing to input or training data. Through a
manual investigation of the source-code of SEntiMoji we find that some sort of
meta-tokenization is applied on input data. Namely, SEntiMoji replaces URLs,
mentions using @ and URls in input data with meta-tokens.

BERT-based transformers: The paper itself makes no explicit mention of
preprocessing that is applied (Biswas et al., 2020). However, in the source-
code of the accompanying replication package we find that the authors use an
existing tokenizer from the huggingface library4. This tokenizer is a Sentence-
Piece tokenizer, which splits a sentence up into several smaller tokens (Kudo
and Richardson, 2018). However, this tokenizer does not apply any meta-
tokenization.

All studied sentiment analysis tools have different preprocessing pipelines.
Conceptually, SentiCR and SentiSW are most similar, as they both use similar
preprocessing pipelines, with differences in the implementation of certain steps.
SEntiMoji falls between SentiCR and SentiSW as it does apply some form
of meta-tokenization, however, it only applies this meta-tokenization for a
limited number of tokens, as opposed to the meta-tokens identified in this
work. Meanwhile Senti4SD has a very limited preprocessing timeline, and the
BERT-based transformers both have a preprocessing pipeline that does not
remove non-natural language.

Response: If the existing preprocessing applied by the tools influences
the effectiveness of meta-tokenization one would expect to see that meta-
tokenization is effective for Senti4SD and the BERT-based transformers, but
not for SentiCR, SentiSW and SEntiMoji. However, we find no evidence for
the effectiveness of meta-tokenization for any of the tools. Which allows us
to conclude that the preprocessing steps already executed by the tools is not
comparable to the meta-tokenization performed in this work.

5 Discussion

Through the experiments conducted in this work, we observe two different find-
ings: We find limited evidence supporting the recommendation that large-scale
deep-learning sentiment-analysis tools outperform existing machine-learning

4 https://huggingface.co/docs/tokenizers/index
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tools. Additionally, we find no evidence that meta-tokenization improves the
performance of sentiment analysis tools.

5.1 Applying Sentiment Analysis Tools to Study Software Engineering

Improper usage of sentiment analysis tools might impact the replicability
of studies that use sentiment-analysis tools to derive conclusions (Lin et al.,
2022). Therefore, existing literature has studied how to apply sentiment anal-
ysis to software engineering data. As a result, there are many different recom-
mendations on how to select and apply sentiment analysis tools. In benchmarks
of general-purpose sentiment analysis tools applied to software engineering
data Jongeling et al. (2017) found that general-purpose tools are not accu-
rate. As a result, Jongeling et al. recommend using tools that are designed
for software engineering data and tools that are tailored to the lingo used by
developers. Novielli et al. (2020) recommend training sentiment analysis tools
on gold-standard datasets. If no gold-standard dataset is available for a given
context, Novielli et al. (2020) recommend using rule-based sentiment analysis
tools. Additionally, Novielli et al. recommends that sentiment analysis tools
should not be used outside of the platform. For instance, a tool trained on
GitHub data should not be used to predict sentiment on StackOverflow data.
Based on additional benchmarks Uddin et al. (2022) recommends using a su-
pervised tool that combines the output of five state-of-the-art sentiment tools
to achieve a 4% increase in accuracy over the best-performing standalone tool.

In addition to the recommendations on how to select sentiment analysis
tools, there are also recommendations on how to analyze sentiment in software
engineering: Novielli et al. (2020, 2021) recommend that sentiment analysis
tools should always be validated on a robustly labeled sample of the data to
ensure the tool is accurate. This process of labeling a small sample and validat-
ing the tool should continue until the tool is sufficiently accurate. Additionally,
Novielli et al. (2020) recommend explicitly picking an established theory of af-
fect and purposefully using sentiment analysis tools that align with this theory
of affect. Finally, Novielli et al. (2021) recommend carefully considering the
unit of analysis (sentences vs. documents).

In this paper, we add a more fine-grained recommendation on how to select
sentiment analysis tools to the body of literature based on our results for
RQ1, namely: Given the relatively minor performance differences between the
tools based on machine learning vs. deep learning, which we include in our
benchmark (Table 5), we recommend that the tool choice for sentiment analysis
should not solely be based on predictive performance. Instead, the tool choice
should depend on the alignment of the tool with the chosen theory of affect,
domain adaption, and the suitability of the tool for the given task. In practice,
the choice of models bigger in terms of language model or tool complexity
might not automatically result in a better performance. Instead, many other
aspects are more important to ensure the validity of obtained results.
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Table 6: The percentage of items per dataset, per polarity class that contain
non-natural language that has been replaced with meta-tokens.

Dataset % Meta-tokens

Negative Neutral Positive

GitHub 12.89% 35.24% 11.38%
StackOverflow 11.65% 15.05% 11.39%

The two studied datasets contain items that were sampled from two differ-
ent platforms. This choice is in line with the intention to minimize the risk of
platform or context influencing our results we have opted to use datasets from
two different platforms. Specifically, two platforms were considered: Github, a
collaborative software development platform, and StackOverflow, a Q&A plat-
form, are used by software engineers to communicate with each other. However,
the language used on these two platforms might differ from the language used
on other platforms. Specifically, it might not be representative of language
used in other software engineering contexts such as the language used during
closed-source development. While most of the publicly available datasets of
developer communication prepared for sentiment analysis have been derived
from open-source projects or StackOverflow (Lin et al., 2022), there have been
attempts to apply sentiment analysis to contexts, such as transcripts of meet-
ings (Herrmann and Klunder, 2021). However, in their study the language of
the meetings is German, and the datasets are not publicly available, making
it infeasible to include data such as this in our study.

Suppose such datasets were available, it is not unthinkable that differences
in language usage or communication norms might influence the performance of
sentiment analysis tools. In other contexts, such as the study of Self-Admitted
Technical Debt, it has been found that practices between open-source and
industry differ (Zampetti et al., 2021). Previous studies show that sentiment
analysis tools are sensitive to the dataset and the context or platform on
which they have been trained (Novielli et al., 2020, 2021). Therefore, when
transferring sentiment analysis tools to other contexts one should be aware
of the potential limitations and the need to validate and potentially retrain
sentiment analysis tools on the specific context.

5.2 Dataset creation and presence of non-natural language

For RQ2 we studied the effect of meta-tokenization on two datasets, GitHub (Novielli
et al., 2020) and StackOverflow (Calefato et al., 2018a). During the creation
of the datasets the authors of both datasets made different decisions: Ac-
cording to the paper, Calefato et al. (2018a) removed code fragments, URLs
and HTML from the text in the dataset. However, in the manual labeling
and automatic removal of non-natural language elements (Tables 1 & 2) we
still identified code fragments and URLs in the StackOverflow dataset. In the
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work of Calefato et al. they used a different approach to remove such ele-
ments than the Regex-based approach used in this work. Specifically, they
only removed multi-line code elements using HTML parsing. In the GitHub
dataset (Novielli et al., 2020), no mention is made of removing any non-natural
language elements. This difference in approaches has replaced a greater num-
ber of source-code fragments with meta-tokens in the GitHub dataset than in
the StackOverflow dataset.

Table 6 shows how many items were replaced with meta-tokens per senti-
ment polarity class in each dataset. Even though the process with which both
datasets were created was different, the proportion of items with negative
or positive sentiment that contain meta-tokens is similar for both datasets.
However, there are more items with meta-tokens in the GitHub dataset for
the neutral class than in the StackOverflow dataset. This difference in the
proportion of meta-tokens in the GitHub dataset is why we intuitively ex-
pected meta-tokenization to work: Without meta-tokenization, sentiment anal-
ysis tools might learn to associate words used in non-natural language snippets
with neutral sentiment. However, even on the GitHub dataset, no effect from
meta-tokenization is observed for any of the benchmarked tools. For the Stack-
Overflow dataset we also do not observe any impact of meta-tokenization.
However, while creating the dataset Calefato et al. (2018a) removed some
non-natural language elements. These removals may have impacted the dis-
tribution of non-natural language elements over the sentiment polarity classes
and the results obtained. Nonetheless, because there is still some imbalance
in the StackOverflow dataset (cf. Table 6) and we observed no difference in
the GitHub dataset, we do not expect this to have influenced our results. In
practice, this means that replacing non-natural language elements does not
further improve the performance of sentiment analysis tools. Therefore, we
recommend not replacing non-natural language elements with meta-tokens for
sentiment analysis tasks.

However, the notion of using meta-tokens, or semantic categories, might
be beneficial for other contexts in which sentiment analysis or opinion mining
is applied. For instance, for the task of summarizing opinions expressed about
APIs, a topic previously studied by Uddin and Khomh (2017). The idea of
using a separate pre-processing step to merge semantically similar words (per-
formance, maintainability, usability) into one token (non-functionals) could
further improve the accuracy of summarization tools.

5.3 Benchmarking sentiment analysis tools

When sentiment analysis tools are benchmarked, the experimental set-up
should attempt to adhere to existing recommendations where possible. In the
benchmarks performed for RQ1 our results differ from the results reported by
Biswas et al. (2020) and Chen et al. (2019). However, both Biswas et al. and
Chen et al. did not adhere to the recommendation of Novielli et al. (2020) to
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retrain all benchmarked tools on the datasets used in the study. As a result
of this, both studies find larger differences in predictive performance between
the machine-learners and deep-learners.

Additionally, for the experiments in this work, we ran each tool ten times
with different train-test splits per experiment to ensure that the results do not
depend on one particular train-test split. While analyzing the performance
scores of the sentiment-analysis tools we noticed that for some tools, there is a
large amount of variance in the performance scores (Figure 1). Therefore, when
benchmarking sentiment analysis tools, and especially when reporting the re-
sults of a single run in which small performance differences are observed, one
should be mindful of this variance. Techniques to address such inconsistencies
in results such as repeating runs or k-fold cross validation (Hastie et al., 2009),
already exist. However, our findings again stress that these techniques remain
important for the study of sentiment analysis tools in software engineering.

6 Threats to Validity

In this section we describe the threats to internal, external and conclusion
validity (Runeson and Höst, 2009).

6.1 Internal Validity

A potential threat to internal validity is the presence of undetected and unre-
placed non-natural language elements in the datasets. These unreplaced non-
natural language elements could affect the validity of our results, as these
elements might impact the ability of the sentiment analysis tools to learn to
classify sentiment. To mitigate this risk of this happening we labeled a sample
of 100 items from each dataset and we identified the non-natural language ele-
ments present in the sample, such that the most frequent types of non-natural
language have been identified. While labeling the sample for non-natural lan-
guage elements a substantial agreement was obtained by the two authors who
performed this labeling task.

The position of non-natural language in the text matters. For instance,
while labeling we encountered frequent examples of items such as usernames,
filenames, and source-code that were used more like named entities: “Thank
you @Username” vs. “@USERNAME. Thanks that was extremely helpful”. In the
second case, the non-natural language element exists separately from the com-
ment, while in the first case it is part of the comment. We opted to not label the
first occurrence as non-natural language since one could interpret the occur-
rence of non-natural language as a part of the text. However, for the automatic
detection and replacement of non-natural language elements with meta-tokens
we used regular expressions, which were not able to distinguish between these
two cases. This imprecise removal might further explain why we do not observe
any effect of meta-tokenization.
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Another risk that might have affected the obtained conclusions is our choice
for regular expression to replace the identified non-natural language elements.
By design, this approach is only able to detect the non-natural language el-
ements that have been properly escaped with the markdown language of the
platform from which the dataset was taken. However, during labeling we found
instances of non-natural language elements which were not (properly) escaped
with markdown. Because of the choice for regular expressions these instances
were not replaced by meta-tokens and might have influenced the results and
the observed impact of meta-tokenization.

The validity of the results for the benchmarking depend on the quality of
the original datasets according to Novielli et al. (2020). Both datasets used in
this study have been labeled using well-defined labeling guidelines. However,
both datasets were created by researchers from the same research group, the
items in both datasets were sampled using semi-random sampling techniques,
and both datasets are based on older datadumps. While these factors might
have affected the ability of the tools to ’learn’ how to classify sentiment we
have no reason to believe that any bias introduced by the construction of the
datasets is specific to one type of tools.

6.2 External Validity

For this work, we used two gold-standard datasets to evaluate the effect of
meta-tokenization. While these two datasets are the only two gold-standard
datasets available of this size labeled using theoretical models of affect other
datasets have been labeled in a more ad-hoc manner (Lin et al., 2022). Our
results might not generalize over these datasets. However, given the ad-hoc
labeling used for these datasets any difference in observed results (either for
predictive performance or for the impact of meta-tokenization) might not be
due to the nature of the datasets, but due to the ad-hoc labeling. Therefore,
we have not opted to include these datasets in the study.

6.3 Conclusion Validity

We run multiple statistical tests to compare both the predictive performance
and agreement of the sentiment analysis tools. However, because we ran sta-
tistical tests for each performance metric and each setting, we corrected the
p-values to reduce the false discovery rate. The procedure we used for this is
the Benjamini-Hochberg procedure (1995).

7 Related Work

Benchmarking studies of Sentiment Analysis tools for Software Engineering:
Several studies have sought to benchmark the performance of sentiment anal-
ysis tools used for software engineering. Jongeling et al. found that general-



22 Nathan Cassee et al.

purpose sentiment analysis tools are inaccurate when they are applied to tech-
nical texts (Jongeling et al., 2017). To address this concern several software
engineering-specific sentiment analysis tools have been designed and bench-
marked (Bosu et al., 2015; Calefato et al., 2018a; Chen et al., 2019; Ding et al.,
2018; Islam and Zibran, 2018; Zhang et al., 2020). A benchmark of sentiment
analysis tools performed by Novielli et al. found that the dataset on which a
software engineering specific sentiment analysis tool is trained on greatly influ-
ences the performance of the tools (Novielli et al., 2020). Moreover, Novielli et
al. found that the dataset on which a sentiment analysis tool has been trained
not only influences predictive performance but also conclusions that can be
obtained when applying sentiment analysis tools (Novielli et al., 2021). While
these benchmarks evaluate the performance of sentiment analysis tools, they
do not specifically investigate how meta-tokenization influences performance.

Some of the benchmarks performed to compare software-engineering senti-
ment analysis tools include a comparison of machine-learning tools and deep-
learning tools(Chen et al., 2019; Zhang et al., 2020). In the work of Chen et al.
(2019) the authors compare the performance of Sentimoji with several other
sentiment-analysis tools, however, since the publication of the work newer
datasets have been released. Therefore, in this benchmark study, we add a
comparison between machine learning and deep learning tools on the GitHub
gold-standard dataset. Moreover, in this work, we also compare Sentimoji with
another deep learner: The BERT-based transformer. Meanwhile, the work of
Zhang et al. (2020) compares BERT-based transformers with machine learning
and dictionary-based sentiment analysis tools on both gold-standard datasets
used for this work. However, in the work of Zhang et al. the authors do not re-
train all machine-learning-based sentiment analysis tools in their benchmarks.
In this study, we retrain all tools used for the study, both machine-learning
and deep-learning-based ones, and therefore provide an accurate comparison.
Uddin et al. (2022) also benchmark BERT-based transformers. In their work
Uddin et al. compare the BERT-based transformer with an ensemble tool that
combines the output of several sentiment analysis tools. They find that the
ensemble tool (SentiSEAD) slightly outperforms the BERT-based transform-
ers. However, they do not directly compare machine-learning-based sentiment
analysis tools with the BERT-based transformers, and the work of Uddin et
al. does not list the predictive performance of each of the tools used as part
of the ensemble. Therefore, the paper does not contain enough information to
answer RQ1 .

Non-natural language in technical text: Previous work already studied the
presence of non-natural language elements such as code fragments in technical
texts. Bacchelli et al. investigated the usage of an automated technique to re-
move noise (code fragments) from e-mails (Bacchelli et al., 2010). They created
a manually labeled dataset based on the mailing lists of several open-source
projects and then used several features to classify whether a line belonging to
an e-mail on the mailing list is natural language or not. While Bacchelli et
al. study e-mail messages we use datasets that were taken from GitHub and
StackOverflow, additionally, Bacchelli et al. perform a line-based classification
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while we replace tokens in sentences. Secondly, Bacchelli et al. do not study
how their classification impacts sentiment analysis tools.

Mäntylä et al. designed an R-based classifier to classify whether a text
fragment is natural-language or not (Mäntylä et al., 2018). Gathered data
from several different platforms, and manually labeled whether these items
are natural language. To classify whether a line of text is natural language or
not Mäntylä et al. use a generalized linear model with a penalty, achieving
high AUC and F-scores. However, in the work of Mäntylä et al. entire lines are
classified, as opposed to the replacement of fragments within a text. Addition-
ally, Mäntylä et al. do not study how this classification influences sentiment
analysis tools.

Efstathiou et al. studied the language used by software engineers in code
reviews, in their work they describe replacing non-natural language fragments
with a token capturing the semantic meaning of the fragment (Efstathiou
and Spinellis, 2018). While we apply an approach that is similar to that of
Efstathiou et al. we study how these replacements influence the ability of
sentiment analysis tools to classify sentiment.

8 Conclusion

In this work, we set out to answer two different research questions: Based on
recent work (Fu and Menzies, 2017; Pamungkas et al., 2020; Shwartz-Ziv and
Armon, 2022; Yedida and Menzies, 2022) we posed RQ1: Do existing deep-
learning sentiment analysis models outperform machine-learning-based senti-
ment analysis tools? Secondly, based on the idea proposed by Efstathiou and
Spinellis (2018) we posed RQ2: How does the replacement of non-natural lan-
guage elements in sentiment analysis data with meta-tokens affect the perfor-
mance of Sentiment Analysis tools?

We have taken five sentiment analysis tools designed for software engi-
neering to answer these two research questions. Three machine-learning tools
and two deep-learning-based tools. Additionally, we selected two gold-standard
datasets of sentiment polarity and benchmarked all five tools on both datasets.
To answer RQ1, we compared machine-learning tools’ performance scores with
the deep-learning-based tools’ scores. To address RQ2, we identified and re-
placed several types of non-natural language elements in the dataset with
meta-tokens. We then compared per tool an instance of the tool trained on
the original dataset, and an instance of the tool trained on the meta-tokenized
version of the dataset.

For RQ1 we only observe minimal performance differences (no more than 4
percentage points) between the best-performing machine-learning tool (Senti4SD)
and the two deep-learning-based sentiment analysis tools. Based on these find-
ings, we extend the existing recommendations in the field of sentiment anal-
ysis for software engineering with the recommendation that the tool selection
should not just be based on predictive performance. Instead, the alignment
of the tool with the chosen theory of affect, and the tool’s suitability for
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the given task should be considered. This recommendation holds as long as
the chosen tools are trained with appropriate gold-standard datasets and the
performance of these tools is validated on a robustly labeled sample. While
deep-learning and machine-learning-based tools perform similarly when gold-
standard datasets are available, future work could focus on understanding
whether tools perform equally well in cases where less robustly labeled data is
available.

Moreover, after studying the impact of meta-tokenization on the accuracy
of sentiment analysis tools (RQ2) we conclude that meta-tokenization does not
improve predictive performance, or agreement. Based on this finding, we argue
that the non-natural language elements present in the current gold-standard
datasets does not reduce the ability of sentiment analysis tools to predict
sentiment. However, there might be other contexts or domains in which non-
natural language elements impact sentiment analysis tools’ ability to predict
sentiment, such as templated messages used by software bots. Future work
could focus on understanding whether meta-tokenization is beneficial in these
contexts.
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